Delay discounting as a

 tool for computational psychiatry

 tool for computational psychiatry}

MPS-UCL Symposium and Advanced Course on Computational Psychiatry and Ageing Research

Zeb Kurth-Nelson
Wellcome Trust Centre for Neuroimaging

1) Delay discounting is important
2) Designing a task \& analyzing the data
3) What delay discounting measures
4) Modelling discounting
5) Delay discounting is important

6) Designing a task \& analyzing the data
7) What delay discounting measures
8) Modelling discounting

Computational psychiatry: A basis for psychiatric disorders that reflects the underlying structure of the problems

How much is $\$ 1000$ worth if you have to wait for it?

Measure a	Edu	Income	BIS NON	BIS MTR	BIS COG	IQ	DD
Age	-.02	$.18^{\square}$	$-.15^{\square}$	-.12	-.09	.02	-.04
Education		$.24^{\square}$	$-.25^{\square}$	-.10	$-.26^{\square}$	$.51^{\square}$	$-.27 \square$
Income			$-.38^{\square}$	-.02	-.12	$.25^{\square}$	$-.27 \square$
BIS NON			$.32^{\square}$	$.44 \square$	$-.15 \square$	$.26 \square$	
BIS MTR				$.56 \square$	-.06	.05	
BIS COG					$.26^{\square}$	$-.16 \square$	
IQ						$-.37 \square$	

$$
\square \quad \rho<.001 .
$$

Drug addicts discount more steeply than healthy controls

Kirby KN, Petry NM, Bickel WK (1999) JEP:G 128:78

Steeper delay discounting in...

Opiate addicts Madden et al (1997) Exp Clin Psychopharm 5:256
Cocaine addicts Coffey et al (2003) Exp Clin Psychopharm 11:18
Methamphetamine addicts Hoffman et al (2006) Psychopharm 188:162
Alcoholics Dom et al (2006) Addiction 101:50-59
Smokers Bickel et al (1999) Psychopharm 146:447
Obese Weller et al (2008) Appetite 51:563-569
Gamblers Petry (2001) Abnorm Psych 110:482
ADHD Wilson et al (2011) J Child Psych\&Psych 52:256
Boderline personality disorder coffey et al (2011) Person Disord 2:128
People with low credit scores Meier and Sprenger (2012) Psych Sci 23:56

People who discount steeply at the beginning of treatment are less likely to see a benefit of treatment

Predictor	Number of negative urine drug screens			Continuous abstinence			4 Weeks abstinence		8 Weeks abstinence	
	B	SE	β	B	SE	β	OR	95\% CI	OR	95\% CI
Model 1										
\$100 money	-0.69	0.35	-0.15*	-0.26	0.16	-0.12	0.90	[0.79, 1.02]	0.88	[0.77, 1.01]
\$1,000 money	-0.95	0.36	-0.20 *	-0.43	0.17	-0.20*	0.87	[0.75, 0.99]*	0.82	[0.71, 0.95]*
\$100 marijuana	-0.08	0.25	-0.03	-0.00	0.12	-0.00	0.97	[0.89, 1.06]	0.96	[0.87, 1.06]
\$1,000 marijuana	-0.35	0.23	-0.12	-0.13	0.11	-0.09	0.91	[0.84, 0.99]*	0.93	[0.85, 1.02]
Model 2 (0)										
\$100 money	-0.39	0.31	-0.09							
\$1,000 money	-0.24	0.34	-0.05	-0.13	0.16	-0.06	0.97	[0.83, 1.14]	0.88	[0.74, 1.04]
\$1,000 marijuana							0.93	[0.85, 1.03]		

Adolescents who discount steeply are more likely to take up smoking

Level			Trend			
β	SE z	p-value	β	SE	z	p-value

Regular smoking

Delay discounting level $-\quad-\quad-\quad{ }_{c}$
Delay discounting trend $-\quad-\quad-\quad-\quad{ }_{-} .24$

Audrain-McGovern et al (2009) Drug Alc Depend 103:99

1) Delay discounting is important

2) Designing a task \& analyzing the data
3) What delay discounting measures
4) Modelling discounting
exponential
k^{d}

Data from Vuchinich and Simpson (1998) Exp Clin Psychopharm 6:292

Data from Vuchinich and Simpson (1998) Exp Clin Psychopharm 6:292
exponential
k^{d}
hyperbolic
$\frac{1}{1+k d}$
power law

$$
d^{-k}
$$

Many studies now show the superiority of hyperbolic fits for human and animal discounting data

Is hyperbolic significantly better?
-Bayesian model comparison

- Rank-sum test on MSEs across subjects

Data from Vuchinich and Simpson (1998) Exp Clin Psychopharm 6:292
exponential k^{d}
hyperbolic 1
$1+k d$
power law
d^{-k}

Why hyperbolic?

- Uncertain hazard rates (Sozou)
- Two or more processes with different time scales (Laibson, KurthNelson\&Redish)
- Non-linear time estimation (Bossaerts)

Data from Vuchinich and Simpson (1998) Exp Clin Psychopharm 6:292

Important:

You should fit subjects individually, rather than fitting averaged data.

If the individual data are exponential, the averaged data will be hyperbolic!

Non-exponential discounting

How to measure discounting?

What would you prefer?
$\$ 500$ right now OR \$1000 in a week
\$750 right now OR \$1000 in a week
$\$ 875$ right now OR \$1000 in a week
\$937 right now OR \$1000 in a week
\$969 right now OR \$1000 in a week
\$984 right now OR \$1000 in a week

How to measure discounting?

What would you prefer?
$\$ 500$ right now OR \$1000 in 5 years
$\$ 250$ right now OR $\$ 1000$ in 5 years
$\$ 375$ right now OR $\$ 1000$ in 5 years
$\$ 437$ right now OR $\$ 1000$ in 5 years
$\$ 406$ right now OR $\$ 1000$ in 5 years
\$391 right now OR \$1000 in 5 years

$$
\begin{gathered}
\frac{1}{1+k d} \\
\text { best fit } k=0.0009
\end{gathered}
$$

Area under the curve (AUC)

A non-parametric alternative to function fitting
$\mathrm{AUC}=(7$ days -0 days $) \cdot \frac{\$ 1000+\$ 984}{2}+\cdots$

Useful if an experimental manipulation could make discounting more or less hyperbolic!

Subject makes a sequence of choices, D

We assume they're using hyperbolic discounting with rate k

What is the value of k that maximizes $P(D \mid k)$?

The subjective value, V, of a reward is the magnitude, R, discounted by the delay, d

So how likely is each choice?

$\mathrm{P}($ choosing option $1 \mid k=0.01)=\frac{1}{1+e^{-\beta \cdot\left(V_{1}-V_{2}\right)}}=0.06$
$\mathrm{P}($ choosing option $2 \mid k=0.01)=\frac{1}{1+e^{-\beta \cdot\left(V_{2}-V_{1}\right)}}=0.94$

$\mathrm{P}($ choosing option $1 \mid \mathrm{k}=0.01)=\frac{1}{1+e^{-\beta \cdot\left(V_{1}-V_{2}\right)}}=0.06$
Let's suppose the subject did choose option 1 . What k did they probably have?

Maximum likelihood

The most likely $\ln k$ is $+\infty$
So we need to observe multiple choices to make a good guess about the subject's real discount rate

Subject makes a sequence of choices, D

We assume they're using hyperbolic discounting with rate k

What is the value of k that maximizes $P(D \mid k)$?

Maximum likelihood

The most likely $\ln k$ is -3.3

Maximum likelihood

How can we design questions to get the most information out of the fewest questions?

The expected value of $\ln k$ is -3.6

The expected value of $\ln k$ is -3.6

choose a random delay and delayed amount

$$
\begin{gathered}
V_{2}=\frac{21}{1+e^{-3.6} \cdot 14}=15 \\
V_{1}=V_{2}=15
\end{gathered}
$$

(i.e., our current best estimate), then this should be the hardest question to answer

Not incentive compatible

Can instead use random questions or optimized random questions

Fitting beta
$P($ choosing option $1 \mid \beta)=\frac{1}{1+e^{-\beta \cdot\left(V_{1}-V_{2}\right)}}$

Fitting beta

- When beta is allowed to be small, k can be contaminated

Fitting beta

- When beta is allowed to be small, k can be contaminated
- beta can take lots of trials to converge

Utility curvature

$$
V=R \cdot \frac{1}{1+k \cdot d}
$$

$\$ 100$ now OR $\$ 200$ in a year

Utility curvature

| Model number (Eq.) | Sum AIC | Delta AIC | Akaike weight |
| :--- | :--- | :--- | :--- | :--- |
| $2, ~(4)$-Hyperbolic discounting of utility | 3595 | 0 | 1 |
| $1,(2)$-Hyperbolic discounting of magnitude | 3630 | 35 | $2.51 \mathrm{E}-08$ |

A change in utility curvature can look like a change in discount rates!

Other task design issues

- Primary vs. secondary rewards
- Real vs. hypothetical rewards
- Large vs. small rewards

Primary vs. secondary rewards

Little-to-no correlation between discounting for juice and money

Real and hypothetical rewards discount the same

Larger rewards discount less steeply

Larger rewards discount less steeply

Johnson and Bickel (2002) JEAB 77:129

1) Delay discounting is important

2) Designing a task \& analyzing the data
3) What delay discounting measures
4) Modelling discounting

What are we measuring?

- Discounting is normally stable, but also surprisingly labile
- Paradoxes of discounting
- Violation of valuation model
- Reverse discounting

Stability of discounting

Stability over two weeks

Ohmura Y at al (2006) Exp Clin Psychopharm 14:318

Stability over three months

Stability over one year

k at Session 1 (log scale)

Discounting is modulated by social conformity

Human partner

Computer partner

$$
\text { - Self } \text { Pre }^{\text {- } \text { Self }_{\text {Post }} \quad \text { Other } \cdots \text { Actual }}
$$

Discounting is modulated by social conformity

Vivid imagination slows discounting

episodic tags: robust regression $t=2.08, p=.023$

Serotonin depletion makes discounting steeper

Schweighofer N et al (2008) J Neurosci 28:4528

Are choices evaluated independently?

$$
V_{1}=R_{1} \cdot \frac{1}{1+k \cdot d_{1}} \quad \text { and } \quad V_{2}=R_{2} \cdot \frac{1}{1+k \cdot d_{2}}
$$

Cross-commodity discounting

Discounting: same

Is the earliest outcome treated as "now"?

Is the earliest outcome treated as "now"?

But,

delay to earlier outcome

Savoring and dread

Savoring and dread

Discounting the past

Discounting the past

1) Delay discounting is important

2) Designing a task \& analyzing the data
3) What delay discounting measures
4) Modelling discounting

Hyperbolic discounting in temporal difference learning

TD models can predict behavioral and neural data.

But standard TD models can only accommodate exponential discounting.

Single-step state-space

- mathematical exponential ($0.75^{\text {delay }}$)
- mathematical hyperbolic (1/(1+delay))
- data from model

Hyperbolic discounting in temporal difference learning

Across a multi-step state-space, standard TD cannot produce hyperbolic discounting.

Chained state-space

- mathematical exponential ($\left.0.75^{\text {delay }}\right)$
- mathematical hyperbolic (1 / (1 + delay))
- data from model

$$
\gamma^{d_{1}} \cdot \gamma^{d_{2}}=\gamma^{d_{1}+d_{2}} \quad \frac{1}{1+d_{1}} \cdot \frac{1}{1+d_{2}} \neq \frac{1}{1+\left(d_{1}+d_{2}\right)}
$$

μ Agents model

Each μ Agent learns its own estimate of the value function.

For action selection, value estimates are averaged across μ Agents.

$$
\begin{gathered}
\delta_{i}=\left(R\left(S_{t}\right)+V_{i}\left(S_{t}\right)\right) \gamma_{i}-V_{i}\left(S_{t-1}\right) \\
V_{i}\left(S_{t-1}\right) \leftarrow V_{i}\left(S_{t-1}\right)+\delta_{i} \alpha
\end{gathered}
$$

Hyperbolic is the average of exponentials

μ Agents have exponential discount rates ($\mathrm{\gamma}$) uniformly spread from 0 to 1.

Average across μ Agents approximates
hyperbolic discounting.

Tanaka et al (2004) Nat Neurosci 7:887

μ Agents allows hyperbolic discounting across multiple transitions

Across a multi-step

 state-space, standard TD cannot produce hyperbolic discounting.Chained state-space
The μ Agents model does produce hyperbolic discounting in this state-space.

- mathematical exponential ($0.75^{\text {delay }}$)
- mathematical hyperbolic (1/(1+ delay))
- data from model

Precommitment

In exponential discounting, adding the same delay to both outcomes doesn't change their relative values.

In hyperbolic discounting, preferences can reverse as you view the choice from a distance.

hyperbolic

Kurth-Nelson and Redish (2010) Front Behav Neurosci 4:184

$\mu A g e n t s$ model precommits

At $C, S S$ is preferred. But at P, N is preferred.

The same average value can be encoded by different distributions. Distributions with more value carried by the more impulsive μ Agents will discount faster.

Thus, average values can cross as discounting progresses.

Kurth-Nelson and Redish (2010) Front Behav Neurosci 4:184

Cognitive search

At the choice point, rats project their hippocampal place representation ahead toward the feeders, suggesting a search process.

Ventral striatum also fires during this deliberation.

Johnson and Redish (2007) J Neurosci

Discounting arises from a search process

Three assumptions:

1. A reward that is easy to find is attributed more value
2. A reward that is closer in search space is easier to find
3. A reward that is closer in time is also closer in search space

Random diffusion from the origin.

The delay to an outcome is defined as its distance from the origin.

Longer search time produces slower

 discountingWith more search time, it is more likely that the reward will be found, even if it is further away.

Search time is a standin for overall search resources:

- Working memory
- Cognitive load
- IQ

Deeper basins produce slower discounting

Deeper basins attract searches, making them more likely to find the outcome.

B

More basins cause more impulsivity

If the representational space is dense with distractors, then it becomes harder to search through extra distance.

Thanks!

