

Delay discounting as a tool for computational psychiatry

MPS-UCL Symposium and Advanced Course on Computational Psychiatry and Ageing Research

2012-Sep-19

Zeb Kurth-Nelson Wellcome Trust Centre for Neuroimaging

1) Delay discounting is important

2) Designing a task & analyzing the data

3) What delay discounting measures

4) Modelling discounting

1) Delay discounting is important

2) Designing a task & analyzing the data

3) What delay discounting measures

4) Modelling discounting

Computational psychiatry: A basis for psychiatric disorders that reflects the underlying structure of the problems

How much is \$1000 worth if you have to wait for it?

Measure ^a	Edu	Income	BIS NON	BIS MTR	BIS COG	IQ	DD
Age	02	.18 [□]	- .15 [□]	12	09	.02	04
Education		.24	25□	10	26□	.51 [□]	27□
Income			38	02	12	.25 [□]	27□
BIS NON				.32	.44	- .15 [□]	.26
BIS MTR					.56□	06	.05
BIS COG						.26 [□]	− .16 [□]
IQ							37□

□ p < .001.</p>

de Wit et al (2007) Person Indiv Diff 42:111

Drug addicts discount more steeply than healthy controls

Steeper delay discounting in...

- **Opiate addicts** Madden et al (1997) Exp Clin Psychopharm 5:256
- **Cocaine addicts** Coffey et al (2003) Exp Clin Psychopharm 11:18
- Methamphetamine addicts Hoffman et al (2006) Psychopharm 188:162
- Alcoholics Dom et al (2006) Addiction 101:50–59
- Smokers Bickel et al (1999) Psychopharm 146:447
- **Obese** Weller et al (2008) Appetite 51:563–569
- Gamblers Petry (2001) Abnorm Psych 110:482
- ADHD Wilson et al (2011) J Child Psych&Psych 52:256

Boderline personality disorder Coffey et al (2011) Person Disord 2:128 People with low credit scores Meier and Sprenger (2012) Psych Sci 23:56

People who discount steeply at the beginning of treatment are less likely to see a benefit of treatment

	Number of negative urine drug screens			Continuous abstinence			4 Weeks abstinence		8 Weeks abstinence	
Predictor	В	SE	β	В	SE	β	OR	95% CI	OR	95% CI
Model 1										
\$100 money	-0.69	0.35	-0.15*	-0.26	0.16	-0.12	0.90	[0.79, 1.02]	0.88	[0.77, 1.01]
\$1,000 money	-0.95	0.36	-0.20*	-0.43	0.17	-0.20*	0.87	[0.75, 0.99]*	0.82	[0.71, 0.95]*
\$100 marijuana	-0.08	0.25	-0.03	-0.00	0.12	-0.00	0.97	[0.89, 1.06]	0.96	[0.87, 1.06]
\$1,000 marijuana	-0.35	0.23	-0.12	-0.13	0.11	-0.09	0.91	[0.84, 0.99]*	0.93	[0.85, 1.02]
Model 2										
\$100 money	-0.39	0.31	-0.09							
\$1,000 money \$1,000 marijuana	-0.24	0.34	-0.05	-0.13	0.16	-0.06	0.97 0.93	[0.83, 1.14] [0.85, 1.03]	0.88	[0.74, 1.04]

Adolescents who discount steeply are more likely to take up smoking

	Level			Trend				
	β	SE	z	<i>p</i> -value	β	SE	z	<i>p</i> -value
Regular smoking								
Delay discounting level	-	-	_	-	.08	.04	2.16	.03
Delay discounting trend	_	_	_	_	24	.38	64	.53

Audrain-McGovern et al (2009) Drug Alc Depend 103:99

1) Delay discounting is important

2) Designing a task & analyzing the data

3) What delay discounting measures

4) Modelling discounting

exponential

 k^d

Many studies now show the superiority of hyperbolic fits for human and animal discounting data

Is hyperbolic significantly better? -Bayesian model comparison - Rank-sum test on MSEs across subjects

Important:

You should fit subjects individually, rather than fitting averaged data.

If the individual data are exponential, the averaged data *will* be hyperbolic!

Non-exponential discounting

How to measure discounting?

What would you prefer? \$500 right now OR \$1000 in a week \$750 right now OR \$1000 in a week \$1000 \$984 \$875 right now OR \$1000 in a week \$937 right now OR \$1000 in a week \$969 right now OR \$1000 in a week \$984 right now OR \$1000 in a week week Mon

1

How to measure discounting?

Area under the curve (AUC)

A non-parametric alternative to function fitting

AUC = $(7 \ days - 0 \ days) \cdot \frac{\$1000 + \$984}{2} + \cdots$

Useful if an experimental manipulation could make discounting more or less hyperbolic!

Subject makes a sequence of choices, D

We assume they're using hyperbolic discounting with rate k

What is the value of k that maximizes P(D|k)?

The *subjective* value, *V*, of a reward is the magnitude, *R*, discounted by the delay, *d*

$$V = R \cdot \frac{1}{1 + k \cdot d}$$

Maximum likelihood

So how likely is each choice?

P(choosing option 1 | k=0.01) = $\frac{1}{1+e^{-\beta \cdot (V_1-V_2)}} = 0.06$

P(choosing option 2 |
$$k=0.01$$
) = $\frac{1}{1+e^{-\beta \cdot (V_2-V_1)}}$ = 0.94

P(choosing option 1 | k=0.01) = $\frac{1}{1+e^{-\beta \cdot (V_1-V_2)}} = 0.06$

Let's suppose the subject did choose option 1. What k did they probably have?

The most likely $\ln k$ is $+\infty$

So we need to observe multiple choices to make a good guess about the subject's real discount rate

Subject makes a sequence of choices, D

We assume they're using hyperbolic discounting with rate k

What is the value of k that maximizes P(D|k)?

How can we design questions to get the most information out of the fewest questions?

The expected value of ln k is -3.6

The expected value of ln k is -3.6

£?	£?
today	in ?

choose a random delay and delayed amount

£?	£21
today	in 2 weeks

so if the subject's ln k is really -3.6 (i.e., our current best estimate), then this should be the hardest question to answer

$$V_2 = \frac{21}{1 + e^{-3.6} \cdot 14} = 15$$

$$V_1 = V_2 = 15$$

Not incentive compatible

Can instead use random questions or optimized random questions

Fitting beta

P(choosing option
$$1 \mid \beta$$
) = $\frac{1}{1 + e^{-\beta \cdot (V_1 - V_2)}}$

Fitting beta

 When beta is allowed to be small, k can be contaminated

Fitting beta

- When beta is allowed to be small, k can be contaminated
- beta can take lots of trials to converge

Utility curvature

Utility curvature

Model number (Eq.)	Sum AIC	Delta AIC	Akaike weight
2, (4)-Hyperbolic discounting of utility	3595	0	1
1, (2)-Hyperbolic discounting of magnitude	3630	35	2.51E-08

A change in utility curvature can look like a change in discount rates!

Pine A (2010) J Neurosci 29:9575

Other task design issues

- Primary vs. secondary rewards
- Real vs. hypothetical rewards
- Large vs. small rewards

Primary vs. secondary rewards

Little-to-no correlation between discounting for juice and money

Jimura K et al (2011) Behav Process 87:253

Real and hypothetical rewards discount the same

Johnson and Bickel (2002) JEAB 77:129

Larger rewards discount less steeply

Johnson and Bickel (2002) JEAB 77:129

Larger rewards discount less steeply

Johnson and Bickel (2002) JEAB 77:129

1) Delay discounting is important

2) Designing a task & analyzing the data

3) What delay discounting measures

4) Modelling discounting

What are we measuring?

- Discounting is normally stable, but also surprisingly labile
- Paradoxes of discounting
 - Violation of valuation model
 - Reverse discounting

Stability of discounting

Stability over two weeks

Stability over three months

Stability over one year

Area under the Curve (Session 1)

Jimura K et al (2011) Behav Process 87:253

Ohmura Y at al (2006) Exp Clin Psychopharm 14:318

Kirby KN (2009) Psych Bull 16:457

Discounting is modulated by social conformity

Garvert MM, Moutoussis M, Kurth-Nelson ZL, Behrens TE, Dolan RJ (in preparation)

Discounting is modulated by social conformity

Vivid imagination slows discounting

episodic tags: robust regression t=2.08, p=.023

Serotonin depletion makes discounting steeper

Schweighofer N et al (2008) J Neurosci 28:4528

Working memory training slows discounting

Pre - Post In(k)

塘

Bickel WK et al (2011) Biol Psych 69:260

Are choices evaluated independently?

$$V_1 = R_1 \cdot \frac{1}{1+k \cdot d_1}$$
 and $V_2 = R_2 \cdot \frac{1}{1+k \cdot d_2}$

Cross-commodity discounting

Bickel WK, Landes RD, Christensen DR, Jackson L, Jones BA, Kurth-Nelson ZL, Redish AD (2011) Psychopharmacology 217:177

Is the earliest outcome treated as "now"?

Kable JW and Glimcher PW (2010) J Neurophys 103:2513

Is the earliest outcome treated as "now"?

McClure SM et al (2007) J Neurosci 27:5796

Savoring and dread

Savoring and dread

Berns GS, Chappelow J, Cekic M, Zink CF, Pagnoni G, Martin-Skurski ME (2006) Science 312:754

Discounting the past

Bickel WK, Yi R, Kowal BP, Gatchalian KM (2008) Drug Alcohol Depend 96:256

Discounting the past

Bickel WK, Yi R, Kowal BP, Gatchalian KM (2008) Drug Alcohol Depend 96:256

1) Delay discounting is important

2) Designing a task & analyzing the data

3) What delay discounting measures

4) Modelling discounting

Hyperbolic discounting in temporal difference learning

Kurth-Nelson and Redish (2009) PLoS ONE 4:e7362

Hyperbolic discounting in temporal difference learning

Across a multi-step state-space, standard TD cannot produce hyperbolic discounting.

Chained state-space

Kurth-Nelson and Redish (2009) PLoS ONE 4:e7362

µAgents model

Hyperbolic is the average of exponentials

Haber et al (2000) J Neurosci 20:2369

Tanaka et al (2004) Nat Neurosci 7:887

µAgents allows hyperbolic discounting across multiple transitions

Across a multi-step state-space, standard TD cannot produce hyperbolic discounting.

The µAgents model does produce hyperbolic discounting in this state-space.

Kurth-Nelson and Redish (2009) PLoS ONE 4:e7362

Precommitment

In exponential discounting, adding the same delay to both outcomes doesn't change their relative values.

In hyperbolic discounting, preferences can reverse as you view the choice from a distance.

µAgents model precommits

At C, SS is preferred. But at P, N is preferred.

The same average value can be encoded by different distributions. Distributions with more value carried by the more impulsive µAgents will discount faster.

Thus, average values can cross as discounting progresses.

Cognitive search

At the choice point, rats project their hippocampal place representation ahead toward the feeders, suggesting a search process.

Ventral striatum also fires during this deliberation.

Johnson and Redish (2007) J Neurosci

Discounting arises from a search process

Three assumptions:

1. A reward that is easy to find is attributed more value

2. A reward that is closer in search space is easier to find

3. A reward that is closer in time is also closer in search space

Random diffusion from the origin.

The delay to an outcome is defined as its distance from the origin.

Longer search time produces slower discounting

With more search time, it is more likely that the reward will be found, even if it is further away.

Search time is a standin for overall search resources:

- Working memory
- Cognitive load

- IQ

0.5 양민

0.0 St

-0.5

-1.0

-1.5

Active

Control

Deeper basins produce slower discounting

Deeper basins attract searches, making them more likely to find the outcome.

Deeper basins are hypothesized encode more episodic representations.

The form in which a state is represented is important to how decisions about it are made.

tags: robust regression t=2.08

More basins cause more impulsivity

If the representational space is dense with distractors, then it becomes harder to search through extra distance.

Kurth-Nelson Z, Bickel W, Redish AD (2012) EJN

Thanks!

