Cooperation: A social strategy?

Wei Song Ong, Michael Platt University of Pennsylvania

'Chicken'

an anti-coordination game with a twist

			'Chicken'
	Straight	Yield	
Straight			
Yield			
			CRASH!

Monkey version

Monkey version

Payoffs:

Each colored token = 1 drop of juice

Monkey vs Monkey:

Payoffs and predictions

More juice for going straight

Payoffs and predictions

Relative dominance in the dyad determines strategy

Monkeys do follow the Nash Equilibrium

High Signal

Low Signal

Monkeys understand the task and discriminate agency conditions

Model schematic

Model specifications

 $c_t \in \{ ext{yield}, ext{straight} \}$ is the animal's choice on trial t

Model improves with ToM and SPE

Modelled predictions from one player's perspective

Why do we work on monkeys?

Dictator game: with monkeys

The monkey can choose to give to:

Himself / Both Only the other/ Nobody

Living Vicariously:

Neurons in the dACCg enjoy 'someone else drinking juice'

Social signals in the TPJ

Mars et al, 2013

Social signals in mSTS

(putative NH-primate TPJ)

Utevsky, Ong and Platt in prep.

mSTS multiplexes social perceptual and decision signals

-

Juice available

Example neuron(s)

Availability of opponent's explicit intentions

Strong signal: dots within the circle indicate online choice

Weak signal: dots within the circle move randomly

Example neuron(s)

Were we cooperating?

* Equivalent amounts of juice received by recording monkey

Example neuron in the primate TPJ

Neurons respond to abstract measures

Example neuron in the primate mSTS

Example neuron in the primate ACCg

mSTS neurons selectively encode cooperation

Percentage of cells showing significant modulation (LM with 5 inputs)

mSTS neurons selectively encode cooperation

Does not distinguish social context

Summary 1

- Behaviour: Monkeys care about the agency and identity of his opponent, he pays attention to the payoff structures, and the availability of the opponent's explicit intentions.
- Neurons: in the mSTS /TPJ and the ACC are sensitive to payoffs, outcomes, and signalling of intentions.
- mSTS/TPJ plays a selective role for cooperating

Thank you!

Platt lab

Michael Platt

Amanda Utevsky (Duke) John Pearson (Duke) Geoff Adams Arjun Ramakrishnan Sam Larson Melannie Jay

Seth Madlon-Kay

Monica Carlson (Duke) Steve Chang (Yale) Nick Dewind (U.Penn) Caroline Drucker (Duke) Karli Watson (U.Colorado)

Funding agencies NIMH 095894 Simons Foundation DOD AR100035z