

Symposium and Advanced Course on Computational Psychiatry and Ageing Research

International Max Planck Research School COMP2PSYCH

## Explaining Heterogeneity in Panel Models with Individual Parameter Contribution (IPC) Regression

Manuel Arnold

#### **Does money make people happy?**

Money



1

## Linear regression model











#### Test for differences with moderators



### **Another problem: causality**



#### **Another problem: causality**

#### A higher income leads to more happiness.



#### **Another problem: causality**

A higher income leads to more happiness.



Happier people earn more money.

#### Autoregressive cross-lagged panel models



#### Adding moderators to the panel model?



## Adding moderators to the panel model?



- Problems:

- Increases model complexity drastically.
- Nonlinear (multiplicative) relationships between variables.

## **Solution: IPC regression**

- Individual parameter contribution (IPC) regression (Oberski, 2013) separates
  - estimation of the theory-driven model
  - and investigation of individual and group-specific differences.
- We will use IPC regression to investigate  $M \rightarrow H$ .









- These contributions approximate individual-specific parameter values.
- Each individual contributes to every parameter estimate of the first-step model.
- We obtain a new data set consisting of these contributions.







- Regress the IPCs of  $M \rightarrow H$  on age, gender, and education.
- Regression output:

|           | Estimate | Std. Error | p       |
|-----------|----------|------------|---------|
| Intercept | 0.160    | 0.189      | 0.396   |
| Age       | 0.001    | 0.002      | 0.651   |
| Gender    | 0.227    | 0.062      | < 0.001 |
| Education | -0.001   | 0.011      | 0.909   |



- Regress the IPCs of M → H on age, gender, and education.
- Regression output:

|           | Estimate | Std. Error | p       |
|-----------|----------|------------|---------|
| Intercept | 0.160    | 0.189      | 0.396   |
| Age       | 0.001    | 0.002      | 0.651   |
| Gender    | 0.227    | 0.062      | < 0.001 |
| Education | -0.001   | 0.011      | 0.909   |



- IPC Regression can be slightly biased in panel models or other complex models.
- The bias depends on the size of the individual or group-specific differences.
- Bias can be corrected by re-calculating the IPCs in homogenous subgroups of the data.
  - Similar to the Fisher scoring algorithm.

## **Summary: IPC regression**

- Separates estimation from investigation of heterogeneity.
- As easy as linear regression.
- Encompasses all models estimated with maximum likelihood (structural equation models, regression models etc.).

#### Thank you for your attention!