

Symposium and Advanced Course on Computational Psychiatry and Ageing Research

International Max Planck Research School COMP2PSYCH

How Arousal Influences Decision Making Under Perceptual Uncertainty

Liliana Polyanska

Background & Concepts

An imminent threat produces arousal response

- Stress hormones \rightarrow state of physiological readiness
- Noradrenaline promotes the function of the sensory cortices, amygdala, and basal ganglia, but impedes firing in the PFC

Perceptual uncertainty results from a combination of internal sensory noise and stimulus noise.

Yerkes-Dodson law

• The relationship between arousal and performance depends on the task difficulty

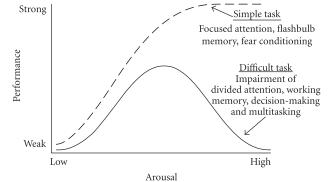
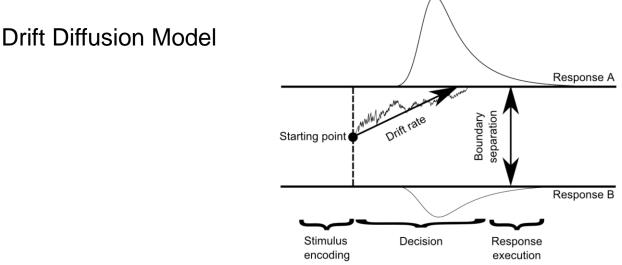



Image: Diamond et al, 2007

Hypothesis

High arousal will modulate decision making under uncertainty by improving performance in condition(s) with relative stimulus certainty and obstructing performance in condition(s) with higher stimulus uncertainty.

Experiment & Analysis

Experimental Design:

Multiple options exist

Options for inducing arousal:

Auditory stimulus Electroshock Pharmacology

Physiological measures:

Heart rate SCR Breathing Pupil dilation Potentiation of auditory startle (?)

Questionnaires: STAI

Beck Anxiety Inventory Intolerance of uncertainty Scale

Neuroimaging: fMRI EEG

Analysis: Drift Diffusion Model Brain signal variability

Possible further questions: Fear generalization

Open Questions

Conceptual difficulties:

Psychological constructs are intertwined.

Apply other models and analysis techniques:

- Nonlinear models (e.g. attractor model)
- Complex systems, dynamical systems
- Machine learning, deep learning

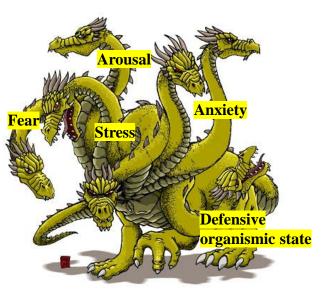


Image: http://www.freaksmutantsandmonsters.com

References

Adolphs, R. (2013). The biology of fear. Current Biology, 23(2), R79-R93.

Arnsten, A. F. (2015). Stress weakens prefrontal networks: molecular insults to higher cognition. *Nature neuroscience*, *18*(10), 1376.

Bach, D. R., & Dolan, R. J. (2012). Knowing how much you don't know: a neural organization of uncertainty estimates. *Nature reviews neuroscience*, *13*(8), 572.

Diamond, D. M., Campbell, A. M., Park, C. R., Halonen, J., & Zoladz, P. R. (2007). The temporal dynamics model of emotional memory processing: a synthesis on the neurobiological basis of stress-induced amnesia, flashbulb and traumatic memories, and the Yerkes-Dodson law. *Neural plasticity*, 2007.

LeDoux, J. E. (2014). Coming to terms with fear. *Proceedings of the National Academy of Sciences*, 111(8), 2871-2878.

Rodrigues, S. M., LeDoux, J. E., & Sapolsky, R. M. (2009). The influence of stress hormones on fear circuitry. *Annual review of neuroscience*, *32*, 289-313.

Schubert, A. L., Frischkorn, G. T., Hagemann, D., & Voss, A. (2016). Trait characteristics of diffusion model parameters. *Journal of Intelligence*, *4*(3), 7.

Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. *Journal of comparative neurology and psychology*, *18*(5), 459-482.